帮助:数学公式

本页面仅提供代码的简单参考,若想准确地使用LaTeX表达数学公式,请自行学习相关知识。
本页面仅提供代码的简单参考,若想准确地使用LaTeX表达数学公式,请自行学习相关知识。

PRTS通过使用LaTeX的变体和HTML标记的组合来渲染数学公式。

在页面中使用数学记号前,您应先确保页面中含有代码{{#Widget:Math}}

代码

首先,您应当在页面中输入代码{{#Widget:Math}},否则数学记号将无法正常显示。

然后,您可以将数学记号放在合适的分隔符内,分隔符的选择取决于您排版的需要。

内联样式

当您要使用内联样式表现数学公式时,您可以选择使用 \( \) 来分隔数学记号与正文。

例如:

The well known Pythagorean theorem \(x^2 + y^2 = z^2\) was proved to be invalid for other exponents.

The well known Pythagorean theorem \(x^2 + y^2 = z^2\) was 
proved to be invalid for other exponents.

行内框样式

当您要使用行内框样式表现数学公式时,您可以选择使用 \[ \]\begin{equation*} \end{equation*} 来分隔数学记号与正文。

例如:

The mass-energy equivalence is described by the famous equation

\[E=mc^2\]

discovered in 1905 by Albert Einstein. In natural units (\(c\) = 1), the formula expresses the identity

\begin{equation*} E=m \end{equation*}

The mass-energy equivalence is described by the famous equation

\[E=mc^2\]

discovered in 1905 by Albert Einstein. 
In natural units (\(c\) = 1), the formula expresses the identity

\begin{equation*}
E=m
\end{equation*}

当您要表现的对象有编号时,则应该使用 \begin{equation} \end{equation} ,尽管 $$ $$ 也可实现同样的功能,但已不再推荐使用。

对齐样式

当您需要多个统一对齐的数学公式时,您应当使用 \begin{align} \end{align} ,若该公式过长,您可以配合使用 \begin{aligned} \end{aligned} 来分列表现公式的各个部分。

\begin{align} 2x+3 &= 7 & 2x+3-3 &= 7-3 \\ 2x &= 4 & \frac{2x}2 &= \frac42\\ x &= 2 \end{align}

\begin{align}
2x+3 &= 7 & 2x+3-3 &= 7-3 \\
2x &= 4 & \frac{2x}2 &= \frac42\\
x &= 2
\end{align}

函数、符号及特殊字符

声调/变音符号

\dot{a}, \ddot{a}, \acute{a}, \grave{a} \(\dot{a}, \ddot{a}, \acute{a}, \grave{a}\)
\check{a}, \breve{a}, \tilde{a}, \bar{a} \(\check{a}, \breve{a}, \tilde{a}, \bar{a}\)
\hat{a}, \widehat{a}, \vec{a} \(\hat{a}, \widehat{a}, \vec{a}\)

标准函数

\exp_a b = a^b, \exp b = e^b, 10^m \(\exp_a b = a^b, \exp b = e^b, 10^m\)
\ln c, \lg d = \log e, \log_{10} f \(\ln c, \lg d = \log e, \log_{10} f\)
\sin a, \cos b, \tan c, \cot d, \sec e, \csc f \(\sin a, \cos b, \tan c, \cot d, \sec e, \csc f\)
\arcsin a, \arccos b, \arctan c \(\arcsin a, \arccos b, \arctan c\)
\arccot d, \arcsec e, \arccsc f \(\arccot d, \arcsec e, \arccsc f\)
\sinh a, \cosh b, \tanh c, \coth d \(\sinh a, \cosh b, \tanh c, \coth d\)
\operatorname{sh}k, \operatorname{ch}l, \operatorname{th}m, \operatorname{coth}n \(\operatorname{sh}k, \operatorname{ch}l, \operatorname{th}m, \operatorname{coth}n\)
\operatorname{argsh}o, \operatorname{argch}p, \operatorname{argth}q \(\operatorname{argsh}o, \operatorname{argch}p, \operatorname{argth}q\)
\sgn r, \left\vert s \right\vert \(\sgn r, \left\vert s \right\vert\)
\min(x,y), \max(x,y) \(\min(x,y), \max(x,y)\)

界限

\min x, \max y, \inf s, \sup t \(\min x, \max y, \inf s, \sup t\)
\lim u, \liminf v, \limsup w \(\lim u, \liminf v, \limsup w\)
\dim p, \deg q, \det m, \ker\phi \(\dim p, \deg q, \det m, \ker\phi\)

投射

\Pr j, \hom l, \lVert z \rVert, \arg z \(\Pr j, \hom l, \lVert z \rVert, \arg z\)

微分及导数

dt, \mathrm{d}t, \partial t, \nabla\psi \(dt, \mathrm{d}t, \partial t, \nabla\psi\)
dy/dx, \mathrm{d}y/\mathrm{d}x, \frac{dy}{dx}, \frac{\mathrm{d}y}{\mathrm{d}x}, \frac{\partial^2}{\partial x_1\partial x_2}y \(dy/dx, \mathrm{d}y/\mathrm{d}x, \frac{dy}{dx}, \frac{\mathrm{d}y}{\mathrm{d}x}, \frac{\partial^2}{\partial x_1\partial x_2}y\)
\prime, \backprime, f^\prime, f', f, f^{(3)}, \dot y, \ddot y \(\prime, \backprime, f^\prime, f', f, f^{(3)} \!, \dot y, \ddot y\)

类字母符号及常数

\infty, \aleph, \complement, \backepsilon, \eth, \Finv, \hbar \(\infty, \aleph, \complement, \backepsilon, \eth, \Finv, \hbar\)
\Im, \imath, \jmath, \Bbbk, \ell, \mho, \wp, \Re, \circledS, \S, \P, \AA \(\Im, \imath, \jmath, \Bbbk, \ell, \mho, \wp, \Re, \circledS, \S, \P, \AA\)

模算数

s_k \equiv 0 \pmod{m} \(s_k \equiv 0 \pmod{m}\)
a \bmod b \(a \bmod b\)
\gcd(m, n), \operatorname{lcm}(m, n) \(\gcd(m, n), \operatorname{lcm}(m, n)\)
\mid, \nmid, \shortmid, \nshortmid \(\mid, \nmid, \shortmid, \nshortmid\)

根号

\surd, \sqrt{2}, \sqrt[n]{}, \sqrt[3]{\frac{x^3+y^3}{2}} \(\surd, \sqrt{2}, \sqrt[n]{}, \sqrt[3]{\frac{x^3+y^3}{2}}\)

运算符

+, -, \pm, \mp, \dotplus \(+, -, \pm, \mp, \dotplus\)
\times, \div, \divideontimes, /, \backslash \(\times, \div, \divideontimes, /, \backslash\)
\cdot, * \ast, \star, \circ, \bullet \(\cdot, * \ast, \star, \circ, \bullet\)
\boxplus, \boxminus, \boxtimes, \boxdot \(\boxplus, \boxminus, \boxtimes, \boxdot\)
\oplus, \ominus, \otimes, \oslash, \odot \(\oplus, \ominus, \otimes, \oslash, \odot\)
\circleddash, \circledcirc, \circledast \(\circleddash, \circledcirc, \circledast\)
\bigoplus, \bigotimes, \bigodot \(\bigoplus, \bigotimes, \bigodot\)

集合

\{ \}, \O \empty \emptyset, \varnothing \(\{ \}, \O \empty \emptyset, \varnothing\)
\in, \notin \not\in, \ni, \not\ni \(\in, \notin \not\in, \ni, \not\ni\)
\cap, \Cap, \sqcap, \bigcap \(\cap, \Cap, \sqcap, \bigcap\)
\cup, \Cup, \sqcup, \bigcup, \bigsqcup, \uplus, \biguplus \(\cup, \Cup, \sqcup, \bigcup, \bigsqcup, \uplus, \biguplus\)
\setminus, \smallsetminus, \times \(\setminus, \smallsetminus, \times\)
\subset, \Subset, \sqsubset \(\subset, \Subset, \sqsubset\)
\supset, \Supset, \sqsupset \(\supset, \Supset, \sqsupset\)
\subseteq, \nsubseteq, \subsetneq, \varsubsetneq, \sqsubseteq \(\subseteq, \nsubseteq, \subsetneq, \varsubsetneq, \sqsubseteq\)
\supseteq, \nsupseteq, \supsetneq, \varsupsetneq, \sqsupseteq \(\supseteq, \nsupseteq, \supsetneq, \varsupsetneq, \sqsupseteq\)
\subseteqq, \nsubseteqq, \subsetneqq, \varsubsetneqq \(\subseteqq, \nsubseteqq, \subsetneqq, \varsubsetneqq\)
\supseteqq, \nsupseteqq, \supsetneqq, \varsupsetneqq \(\supseteqq, \nsupseteqq, \supsetneqq, \varsupsetneqq\)

关系符号

=, \ne, \neq, \equiv, \not\equiv \(=, \ne, \neq, \equiv, \not\equiv\)
\doteq, \doteqdot, \overset{\underset{\mathrm{def}}{}}{=}, := \(\doteq, \doteqdot, \overset{\underset{\mathrm{def}}{}}{=}, :=\)
\sim, \nsim, \backsim, \thicksim, \simeq, \backsimeq, \eqsim, \cong, \ncong \(\sim, \nsim, \backsim, \thicksim, \simeq, \backsimeq, \eqsim, \cong, \ncong\)
\approx, \thickapprox, \approxeq, \asymp, \propto, \varpropto \(\approx, \thickapprox, \approxeq, \asymp, \propto, \varpropto\)
<, \nless, \ll, \not\ll, \lll, \not\lll, \lessdot \(<, \nless, \ll, \not\ll, \lll, \not\lll, \lessdot\)
>, \ngtr, \gg, \not\gg, \ggg, \not\ggg, \gtrdot \(>, \ngtr, \gg, \not\gg, \ggg, \not\ggg, \gtrdot\)
\le, \leq, \lneq, \leqq, \nleq, \nleqq, \lneqq, \lvertneqq \(\le, \leq, \lneq, \leqq, \nleq, \nleqq, \lneqq, \lvertneqq\)
\ge, \geq, \gneq, \geqq, \ngeq, \ngeqq, \gneqq, \gvertneqq \(\ge, \geq, \gneq, \geqq, \ngeq, \ngeqq, \gneqq, \gvertneqq\)
\lessgtr, \lesseqgtr, \lesseqqgtr, \gtrless, \gtreqless, \gtreqqless \(\lessgtr, \lesseqgtr, \lesseqqgtr, \gtrless, \gtreqless, \gtreqqless\)
\leqslant, \nleqslant, \eqslantless \(\leqslant, \nleqslant, \eqslantless\)
\geqslant, \ngeqslant, \eqslantgtr \(\geqslant, \ngeqslant, \eqslantgtr\)
\lesssim, \lnsim, \lessapprox, \lnapprox \(\lesssim, \lnsim, \lessapprox, \lnapprox\)
\gtrsim, \gnsim, \gtrapprox, \gnapprox \(\gtrsim, \gnsim, \gtrapprox, \gnapprox\)
\prec, \nprec, \preceq, \npreceq, \precneqq \(\prec, \nprec, \preceq, \npreceq, \precneqq\)
\succ, \nsucc, \succeq, \nsucceq, \succneqq \(\succ, \nsucc, \succeq, \nsucceq, \succneqq\)
\preccurlyeq, \curlyeqprec \(\preccurlyeq, \curlyeqprec\)
\succcurlyeq, \curlyeqsucc \(\succcurlyeq, \curlyeqsucc\)
\precsim, \precnsim, \precapprox, \precnapprox \(\precsim, \precnsim, \precapprox, \precnapprox\)
\succsim, \succnsim, \succapprox, \succnapprox \(\succsim, \succnsim, \succapprox, \succnapprox\)

几何符号

\parallel, \nparallel, \shortparallel, \nshortparallel \(\parallel, \nparallel, \shortparallel, \nshortparallel\)
\perp, \angle, \sphericalangle, \measuredangle, 45^\circ \(\perp, \angle, \sphericalangle, \measuredangle, 45^\circ\)
\Box, \blacksquare, \diamond, \Diamond \lozenge, \blacklozenge, \bigstar \(\Box, \blacksquare, \diamond, \Diamond \lozenge, \blacklozenge, \bigstar\)
\bigcirc, \triangle, \bigtriangleup, \bigtriangledown \(\bigcirc, \triangle, \bigtriangleup, \bigtriangledown\)
\vartriangle, \triangledown \(\vartriangle, \triangledown\)
\blacktriangle, \blacktriangledown, \blacktriangleleft, \blacktriangleright \(\blacktriangle, \blacktriangledown, \blacktriangleleft, \blacktriangleright\)

逻辑符号

\forall, \exists, \nexists \(\forall, \exists, \nexists\)
\therefore, \because, \And \(\therefore, \because, \And\)
\or \lor \vee, \curlyvee, \bigvee \(\or, \lor, \vee, \curlyvee, \bigvee\)
\and \land \wedge, \curlywedge, \bigwedge \(\and, \land, \wedge, \curlywedge, \bigwedge\)
\bar{q}, \bar{abc}, \overline{q}, \overline{abc},

\lnot \neg, \not\operatorname{R}, \bot, \top

\(\bar{q}, \bar{abc}, \overline{q}, \overline{abc},\)

\(\lnot \neg, \not\operatorname{R}, \bot, \top\)

\vdash \dashv, \vDash, \Vdash, \models \(\vdash, \dashv, \vDash, \Vdash, \models\)
\Vvdash \nvdash \nVdash \nvDash \nVDash \(\Vvdash, \nvdash, \nVdash, \nvDash, \nVDash\)
\ulcorner \urcorner \llcorner \lrcorner \(\ulcorner \urcorner \llcorner \lrcorner\)

箭头

\Rrightarrow, \Lleftarrow \(\Rrightarrow, \Lleftarrow\)
\Rightarrow, \nRightarrow, \Longrightarrow \implies \(\Rightarrow, \nRightarrow, \Longrightarrow, \implies\)
\Leftarrow, \nLeftarrow, \Longleftarrow \(\Leftarrow, \nLeftarrow, \Longleftarrow\)
\Leftrightarrow, \nLeftrightarrow, \Longleftrightarrow \iff \(\Leftrightarrow, \nLeftrightarrow, \Longleftrightarrow \iff\)
\Uparrow, \Downarrow, \Updownarrow \(\Uparrow, \Downarrow, \Updownarrow\)
\rightarrow \to, \nrightarrow, \longrightarrow \(\rightarrow \to, \nrightarrow, \longrightarrow\)
\leftarrow \gets, \nleftarrow, \longleftarrow \(\leftarrow \gets, \nleftarrow, \longleftarrow\)
\leftrightarrow, \nleftrightarrow, \longleftrightarrow \(\leftrightarrow, \nleftrightarrow, \longleftrightarrow\)
\uparrow, \downarrow, \updownarrow \(\uparrow, \downarrow, \updownarrow\)
\nearrow, \swarrow, \nwarrow, \searrow \(\nearrow, \swarrow, \nwarrow, \searrow\)
\mapsto, \longmapsto \(\mapsto, \longmapsto\)
\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons \(\rightharpoonup, \rightharpoondown, \leftharpoonup, \leftharpoondown, \upharpoonleft, \upharpoonright, \downharpoonleft, \downharpoonright, \rightleftharpoons, \leftrightharpoons\)
\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \rightarrowtail \looparrowright \(\curvearrowleft, \circlearrowleft, \Lsh, \upuparrows, \rightrightarrows, \rightleftarrows, \rightarrowtail, \looparrowright\)
\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \leftarrowtail \looparrowleft \(\curvearrowright, \circlearrowright, \Rsh, \downdownarrows, \leftleftarrows, \leftrightarrows, \leftarrowtail, \looparrowleft\)
\hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow \twoheadrightarrow \twoheadleftarrow \(\hookrightarrow, \hookleftarrow, \multimap, \leftrightsquigarrow, \rightsquigarrow, \twoheadrightarrow, \twoheadleftarrow\)

特殊符号

\amalg \P \S \% \dagger \ddagger \ldots \cdots \(\amalg \P \S \% \dagger \ddagger \ldots \cdots\)
\smile \frown \wr \triangleleft \triangleright \(\smile \frown \wr \triangleleft \triangleright\)
\diamondsuit, \heartsuit, \clubsuit, \spadesuit, \Game, \flat, \natural, \sharp \(\diamondsuit, \heartsuit, \clubsuit, \spadesuit, \Game, \flat, \natural, \sharp\)

未排序

\diagup \diagdown \centerdot \ltimes \rtimes \leftthreetimes \rightthreetimes \(\diagup, \diagdown, \centerdot, \ltimes, \rtimes, \leftthreetimes, \rightthreetimes\)
\eqcirc \circeq \triangleq \bumpeq \Bumpeq \doteqdot \risingdotseq \fallingdotseq \(\eqcirc, \circeq, \triangleq, \bumpeq, \Bumpeq, \doteqdot, \risingdotseq, \fallingdotseq\)
\intercal \barwedge \veebar \doublebarwedge \between \pitchfork \(\intercal, \barwedge, \veebar, \doublebarwedge, \between, \pitchfork\)
\vartriangleleft \ntriangleleft \vartriangleright \ntriangleright \(\vartriangleleft, \ntriangleleft, \vartriangleright, \ntriangleright\)
\trianglelefteq \ntrianglelefteq \trianglerighteq \ntrianglerighteq \(\trianglelefteq, \ntrianglelefteq, \trianglerighteq, \ntrianglerighteq\)

关于这些符号的更多语义,参阅TeX Cookbook的简述。

上标、下标及积分等

功能 语法 效果
上标 a^2 \( a^2\)
下标 a_2 \( a_2\)
组合 a^{2+2} \( a^{2+2}\)
a_{i,j} \( a_{i,j}\)
结合上下标 x_2^3 \( x_2^3\)
前置上下标 {}_1^2\!X_3^4 \( {}_1^2\!X_3^4\)
导数
HTML
x' \( x'\)
导数
PNG
x^\prime \( x^\prime\)
导数
错误
x\prime \( x\prime\)
导数点 \dot{x} \( \dot{x}\)
\ddot{y} \( \ddot{y}\)
向量 \vec{c} \( \vec{c}\)
\overleftarrow{a b} \( \overleftarrow{a b}\)
\overrightarrow{c d} \( \overrightarrow{c d}\)
\overleftrightarrow{a b} \( \overleftrightarrow{a b}\)
\widehat{e f g} \( \widehat{e f g}\)
上弧
(註: 正確應該用 \overarc,但在這裡行不通。要用建議的語法作為解決辦法。)(使用\overarc時需要引入{arcs}套件。)
\overset{\frown} {AB} \( \overset{\frown} {AB}\)
上划线 \overline{h i j} \( \overline{h i j}\)
下划线 \underline{k l m} \( \underline{k l m}\)
上括号 \overbrace{1+2+\cdots+100} \( \overbrace{1+2+\cdots+100}\)
\begin{matrix} 5050 \\ \overbrace{ 1+2+\cdots+100 } \end{matrix} \( \begin{matrix} 5050 \\ \overbrace{ 1+2+\cdots+100 } \end{matrix}\)
下括号 \underbrace{a+b+\cdots+z} \( \underbrace{a+b+\cdots+z}\)
\begin{matrix} \underbrace{ a+b+\cdots+z } \\ 26 \end{matrix} \( \begin{matrix} \underbrace{ a+b+\cdots+z } \\ 26 \end{matrix}\)
求和 \sum_{k=1}^N k^2 \( \sum_{k=1}^N k^2\)
\begin{matrix} \sum_{k=1}^N k^2 \end{matrix} \( \begin{matrix} \sum_{k=1}^N k^2 \end{matrix}\)
求积 \prod_{i=1}^N x_i \( \prod_{i=1}^N x_i\)
\begin{matrix} \prod_{i=1}^N x_i \end{matrix} \( \begin{matrix} \prod_{i=1}^N x_i \end{matrix}\)
上积 \coprod_{i=1}^N x_i \( \coprod_{i=1}^N x_i\)
\begin{matrix} \coprod_{i=1}^N x_i \end{matrix} \( \begin{matrix} \coprod_{i=1}^N x_i \end{matrix}\)
极限 \lim_{n \to \infty}x_n \( \lim_{n \to \infty}x_n\)
\begin{matrix} \lim_{n \to \infty}x_n \end{matrix} \( \begin{matrix} \lim_{n \to \infty}x_n \end{matrix}\)
积分 \int_{-N}^{N} e^x\, \mathrm{d}x \( \int_{-N}^{N} e^x\, \mathrm{d}x\)
\begin{matrix} \int_{-N}^{N} e^x\, \mathrm{d}x \end{matrix} \( \begin{matrix} \int_{-N}^{N} e^x\, \mathrm{d}x \end{matrix}\)
双重积分 \iint_{D}^{W} \, \mathrm{d}x\,\mathrm{d}y \( \iint_{D}^{W} \, \mathrm{d}x\,\mathrm{d}y\)
三重积分 \iiint_{E}^{V} \, \mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z \( \iiint_{E}^{V} \, \mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\)
四重积分 \iiiint_{F}^{U} \, \mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}t \( \iiiint_{F}^{U} \, \mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}t\)
闭合的路径积分、曲面积分 \oint_{C} x^3\, \mathrm{d}x + 4y^2\, \mathrm{d}y \( \oint_{C} x^3\, \mathrm{d}x + 4y^2\, \mathrm{d}y\)
交集 \bigcap_1^{n} p \( \bigcap_1^{n} p\)
并集 \bigcup_1^{k} p \( \bigcup_1^{k} p\)

分数、矩阵和多行列式

功能 语法 效果
分数 \frac{2}{4}=0.5 \(\frac{2}{4}=0.5\)
小型分数 \tfrac{2}{4} = 0.5 \(\tfrac{2}{4} = 0.5\)
大型分数(嵌套) \cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a \(\cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a\)
大型分数(不嵌套) \dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{2}{4}}} = a \(\dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{2}{4}}} = a\)
二项式系数 \dbinom{n}{r}=\binom{n}{n-r}=\mathrm{C}_n^r=\mathrm{C}_n^{n-r} \(\dbinom{n}{r}=\binom{n}{n-r}=\mathrm{C}_n^r=\mathrm{C}_n^{n-r}\)
n \choose n-r, n^2 \choose r_1, a-b \choose c+d, {n \choose 0}+{n \choose 1} \(n \choose n-r\) \(n^2 \choose r_1\) \(a-b \choose c+d\) \({n \choose 0}+{n \choose 1}\)
小型二项式系数 \tbinom{n}{r}=\tbinom{n}{n-r}=\mathrm{C}_n^r=\mathrm{C}_n^{n-r} \(\tbinom{n}{r}=\tbinom{n}{n-r}=\mathrm{C}_n^r=\mathrm{C}_n^{n-r}\)
大型二项式系数 \binom{n}{r}=\dbinom{n}{n-r}=\mathrm{C}_n^r=\mathrm{C}_n^{n-r} \(\binom{n}{r}=\dbinom{n}{n-r}=\mathrm{C}_n^r=\mathrm{C}_n^{n-r}\)
矩阵
\begin{smallmatrix}
a&b\\ c&d
\end{smallmatrix}

\begin{smallmatrix} a&b\\ c&d \end{smallmatrix}

多行等式、同餘式
\begin{align}
f(x) & = (m+n)^2 \\
& = m^2+2mn+n^2 \\
\end{align}

\begin{align} f(x) & = (m+n)^2 \\ & = m^2+2mn+n^2 \\ \end{align}

\begin{alignat}{3}
f(x) & = (m-n)^2 \\
f(x) & = (-m+n)^2 \\
& = m^2-2mn+n^2 \\
\end{alignat}

\begin{alignat}{3} f(x) & = (m-n)^2 \\ f(x) & = (-m+n)^2 \\ & = m^2-2mn+n^2 \\ \end{alignat}

长公式换行

\(f(x) \,\!\)
\(= \sum_{n=0}^\infty a_n x^n \)
\(= a_0+a_1x+a_2x^2+\cdots\)

\(f(x) \,\!\)\(= \sum_{n=0}^\infty a_n x^n \)\(= a_0 +a_1x+a_2x^2+\cdots\)

方程组
\begin{cases}
3x + 5y +  z \\
7x - 2y + 4z \\
-6x + 3y + 2z
\end{cases}
\(\begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases}\)
数组
\begin{array}{|c|c||c|} a & b & S \\
\hline
0&0&1\\
0&1&1\\
1&0&1\\
1&1&0\\
\end{array}

\begin{array}{|c|c||c|} a & b & S \\ \hline 0&0&1\\ 0&1&1\\ 1&0&1\\ 1&1&0\\ \end{array}

字体

希腊字母
\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta \(\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta\)
\Iota \Kappa \Lambda \Mu \Nu \Xi \Omicron \Pi \(\Iota \Kappa \Lambda \Mu \Nu \Omicron \Xi \Pi\)
\Rho \Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega \(\Rho \Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega\)
\alpha \beta \gamma \delta \epsilon \zeta \eta \theta \(\alpha \beta \gamma \delta \epsilon \zeta \eta \theta\)
\iota \kappa \lambda \mu \nu \omicron \xi \pi \(\iota \kappa \lambda \mu \nu \omicron \xi \pi\)
\rho \sigma \tau \upsilon \phi \chi \psi \omega \(\rho \sigma \tau \upsilon \phi \chi \psi \omega\)
\varepsilon \digamma \varkappa \varpi \(\varepsilon \digamma \varkappa \varpi\)
\varrho \varsigma \vartheta \varphi \(\varrho \varsigma \vartheta \varphi\)
希伯来符号
\aleph \beth \gimel \daleth \(\aleph \beth \gimel \daleth\)
黑板报粗体
\mathbb{ABCDEFGHI} \(\mathbb{ABCDEFGHI}\)
\mathbb{JKLMNOPQR} \(\mathbb{JKLMNOPQR}\)
\mathbb{STUVWXYZ} \(\mathbb{STUVWXYZ}\)
粗体
\mathbf{ABCDEFGHI} \(\mathbf{ABCDEFGHI}\)
\mathbf{JKLMNOPQR} \(\mathbf{JKLMNOPQR}\)
\mathbf{STUVWXYZ} \(\mathbf{STUVWXYZ}\)
\mathbf{abcdefghijklm} \(\mathbf{abcdefghijklm}\)
\mathbf{nopqrstuvwxyz} \(\mathbf{nopqrstuvwxyz}\)
\mathbf{0123456789} \(\mathbf{0123456789}\)
粗体希腊字母
\boldsymbol{\Alpha\Beta\Gamma\Delta\Epsilon\Zeta\Eta\Theta} \(\boldsymbol{\Alpha\Beta\Gamma\Delta\Epsilon\Zeta\Eta\Theta}\)
\boldsymbol{\Iota\Kappa\Lambda\Mu\Nu\Xi\Pi\Rho} \(\boldsymbol{\Iota\Kappa\Lambda\Mu\Nu\Xi\Pi\Rho}\)
\boldsymbol{\Sigma\Tau\Upsilon\Phi\Chi\Psi\Omega} \(\boldsymbol{\Sigma\Tau\Upsilon\Phi\Chi\Psi\Omega}\)
\boldsymbol{\alpha\beta\gamma\delta\epsilon\zeta\eta\theta} \(\boldsymbol{\alpha\beta\gamma\delta\epsilon\zeta\eta\theta}\)
\boldsymbol{\iota\kappa\lambda\mu\nu\xi\pi\rho} \(\boldsymbol{\iota\kappa\lambda\mu\nu\xi\pi\rho}\)
\boldsymbol{\sigma\tau\upsilon\phi\chi\psi\omega} \(\boldsymbol{\sigma\tau\upsilon\phi\chi\psi\omega}\)
\boldsymbol{\varepsilon\digamma\varkappa\varpi} \(\boldsymbol{\varepsilon\digamma\varkappa\varpi}\)
\boldsymbol{\varrho\varsigma\vartheta\varphi} \(\boldsymbol{\varrho\varsigma\vartheta\varphi}\)
斜体(拉丁字母默认)
\mathit{0123456789} \(\mathit{0123456789}\)
斜体希腊字母(小写字母默认)
\mathit{\Alpha\Beta\Gamma\Delta\Epsilon\Zeta\Eta\Theta} \(\mathit{\Alpha\Beta\Gamma\Delta\Epsilon\Zeta\Eta\Theta}\)
\mathit{\Iota\Kappa\Lambda\Mu\Nu\Xi\Pi\Rho} \(\mathit{\Iota\Kappa\Lambda\Mu\Nu\Xi\Pi\Rho}\)
\mathit{\Sigma\Tau\Upsilon\Phi\Chi\Psi\Omega} \(\mathit{\Sigma\Tau\Upsilon\Phi\Chi\Psi\Omega}\)
罗马体
\mathrm{ABCDEFGHI} \(\mathrm{ABCDEFGHI}\)
\mathrm{JKLMNOPQR} \(\mathrm{JKLMNOPQR}\)
\mathrm{STUVWXYZ} \(\mathrm{STUVWXYZ}\)
\mathrm{abcdefghijklm} \(\mathrm{abcdefghijklm}\)
\mathrm{nopqrstuvwxyz} \(\mathrm{nopqrstuvwxyz}\)
\mathrm{0123456789} \(\mathrm{0123456789}\)
无衬线体
\mathsf{ABCDEFGHI} \(\mathsf{ABCDEFGHI}\)
\mathsf{JKLMNOPQR} \(\mathsf{JKLMNOPQR}\)
\mathsf{STUVWXYZ} \(\mathsf{STUVWXYZ}\)
\mathsf{abcdefghijklm} \(\mathsf{abcdefghijklm}\)
\mathsf{nopqrstuvwxyz} \(\mathsf{nopqrstuvwxyz}\)
\mathsf{0123456789} \(\mathsf{0123456789}\)
无衬线体希腊字母(仅大写)
\mathsf{\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta} \(\mathsf{\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta}\)
\mathsf{\Iota \Kappa \Lambda \Mu \Nu \Xi \Pi \Rho} \(\mathsf{\Iota \Kappa \Lambda \Mu \Nu \Xi \Pi \Rho}\)
\mathsf{\Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega} \(\mathsf{\Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega}\)
手写体/花体
\mathcal{ABCDEFGHI} \(\mathcal{ABCDEFGHI}\)
\mathcal{JKLMNOPQR} \(\mathcal{JKLMNOPQR}\)
\mathcal{STUVWXYZ} \(\mathcal{STUVWXYZ}\)
Fraktur体
\mathfrak{ABCDEFGHI} \(\mathfrak{ABCDEFGHI}\)
\mathfrak{JKLMNOPQR} \(\mathfrak{JKLMNOPQR}\)
\mathfrak{STUVWXYZ} \(\mathfrak{STUVWXYZ}\)
\mathfrak{abcdefghijklm} \(\mathfrak{abcdefghijklm}\)
\mathfrak{nopqrstuvwxyz} \(\mathfrak{nopqrstuvwxyz}\)
\mathfrak{0123456789} \(\mathfrak{0123456789}\)
小型手写体
{\scriptstyle\text{abcdefghijklm}} \({\scriptstyle\text{abcdefghijklm}}\)

混合字体

特征 语法 渲染效果
斜体字符(忽略空格) x y z \(x y z\)
非斜体字符 \text{x y z} \(\text{x y z}\)
混合斜体(差) \text{if} n \text{is even} \(\text{if} n \text{is even}\)
混合斜体(好) \text{if }n\text{ is even} \(\text{if }n\text{ is even}\)
混合斜体( 替代品:~ 或者"\ "强制空格) \text{if}~n\ \text{is even} \(\text{if}~n\ \text{is even}\)

括号

功能 语法 显示
短括号 ( \frac{1}{2} ) \(( \frac{1}{2} )\)
长括号 \left( \frac{1}{2} \right) \(\left ( \frac{1}{2} \right )\)

您可以使用 \left\right 来显示不同的括号:

功能 语法 显示
圆括号,小括号 \left( \frac{a}{b} \right) \(\left( \frac{a}{b} \right)\)
方括号,中括号 \left[ \frac{a}{b} \right] \(\left[ \frac{a}{b} \right]\)
花括号,大括号 \left\{ \frac{a}{b} \right\} \(\left\{ \frac{a}{b} \right\}\)
角括号 \left \langle \frac{a}{b} \right \rangle \(\left\langle \frac{a}{b} \right \rangle\)
取整函数 \left \lfloor \frac{a}{b} \right \rfloor \(\left \lfloor \frac{a}{b} \right \rfloor\)
取顶函数 \left \lceil \frac{c}{d} \right \rceil \(\left \lceil \frac{c}{d} \right \rceil\)
斜线与反斜线 \left / \frac{a}{b} \right \backslash \(\left / \frac{a}{b} \right \backslash \)
上下箭头 \left \uparrow \frac{a}{b} \right \downarrow \(\left \uparrow \frac{a}{b} \right \downarrow \)
\left \Uparrow \frac{a}{b} \right \Downarrow \(\left \Uparrow \frac{a}{b} \right \Downarrow \)
\left \updownarrow \frac{a}{b} \right \Updownarrow \(\left \updownarrow \frac{a}{b} \right \Updownarrow\)
单左括号 \left \{ \frac{a}{b} \right . \(\left \{ \frac{a}{b} \right .\)
单右括号 \left . \frac{a}{b} \right \} \(\left . \frac{a}{b} \right \}\)

备注:

  • 可以使用 \big, \Big, \bigg, \Bigg 控制括号的大小,比如代码
\Bigg ( \bigg [ \Big \{ \big \langle \left | \| \frac{a}{b} \| \right | \big \rangle \Big \} \bigg ] \Bigg )

 显示︰

\(\Bigg ( \bigg [ \Big \{ \big \langle \left | \| \frac{a}{b} \| \right | \big \rangle \Big \} \bigg ] \Bigg )\)

空格

功能 语法 显示 宽度
2个quad空格 \alpha\qquad\beta \(\alpha\qquad\beta\) \(2m\ \)
quad空格 \alpha\quad\beta \(\alpha\quad\beta\) \(m\ \)
大空格 \alpha\ \beta \(\alpha\ \beta\) \(\frac{m}{3}\)
中等空格 \alpha\;\beta \(\alpha\;\beta\) \(\frac{2m}{7}\)
小空格 \alpha\,\beta \(\alpha\,\beta\) \(\frac{m}{6}\)
紧贴 \alpha\!\beta \(\alpha\!\beta\) \(-\frac{m}{6}\)